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S I M U L A T I O N  O F  T R A N S F E R  O F  S O L I D  P A R T I C L E S  

BY A F I L T R A T I O N  F L O W  

A. I. Niki forov and D. P. Nikan'shin UDC 533.539 

A mathematical model  of  transfer of  solid particles by a filtration liquid f low is suggested. The phenomena 

of  lowering the dynamic porosity and permeability of  the porous medium by filling the intrapore space with 

a disperse phase are described. An  equation is obtained that governs the change in the pore size distribution 

funct ion in time. 

Introduction. The process of transport of solid particles by a liquid in a porous medium is the concern of 

many investigations. A considreable portion of earlier publications dealt with simulation of transport of solid 

impurities through sand filters used for purification of water. At the present time, this problem has received much 

attention in petroleum production. When petroleum is displaced, the water injected into the bed usually carries 

different solid impurities in the form of disperse particles. The latter can appear in the filtration flow as a result 

of incomplete purification of the water before injection, from drill solutions that contain clay particles and penetrate 

into the beds, and from the porous medium itself on the surface of whose pores there are different solid particles 
that can be torn away by the flow. An adequate description of the processes of colmatation (the filling of the 

interstitial space with disperse particles) and suffosion (the separation of particles from the surface of the porous 

skeleton) is an important problem. In [1 ], a mathematical model of transport of particles by a single-phase flow is 

described that takes account of the processes of colmatation and suffosion, and corresponding kinetic relations are 

suggested. The same kinetic relationships are used in [2 ]. In the latter work the phenomenon of clogging up of 

pore channels with particles is also taken into account, and therefore the pore space is arbitrarily divided into two 

media, one of which contains channels that can be clogged, and the other contains channels that stay unclogged. 

A more detailed description of the processes of colmatation, suffosion, and clogging of capillaries involves 

the size distribution function of the pores and a model representation of the porous medium. In [3 ], applying the 

results of [4 ] to evaluating colmatation, the dependence of the rate of narrowing of a pore channel on the dimensions 

of the capillary, the mean flow velocity in the channel, and the mean volume of the particles is presented. To 

evaluate the number of clogged pores, a probability approach is used. The change in the permeability is determined 

by means of an ideal model of the porous medium in the form of a bundle of capillaries. 

Below we suggest a mathematical model of transport of disperse particles by a filtration flow. The porous 

medium is represented in the form of two interpenetrating continua [5, 6 ], one of which is connected with movable 

liquids and particles and the other with immovable ones. An equation is obtained that determines the dynamics of 

the pore size distribution function. The rate of change of the radius of the pore channel and the rate of decrease 

of the number of capillaries of a certain radius, which enter this equation, are evaluated proceeding from a model 

representation of the porous medium in the form of a bundle of capillaries with contractions. Corresponding 

expressions are obtained for the dynamic porosity, permeability, and mass exchange between the two media. 

Mathematical Model. Suppose each point of the porous medium is characterized by the following quantities: 

porosity m = re(x, y, z, t), absolute permeability k 0 --- k°(x,  y, z), and volume concentration of solid particles C = 

C(x,  y, z, t). Following [6 ], we arbitrarily divide the porous medium into two interpenetrating continua charac- 

terized by the porosities ml and m2: ml -- m! (x, y, z, t) is the portion of the pore space occupied by movable liquid; 

m2 = m2(x, y, z, t) is the same with immovable liquid; 
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m ! + m 2 = m .  

We represent  the conservation equations for the first continuum in the form 

d 
dt ml + d i v V = - q '  

d 
a-'t (Clml)  + a i r  (CIV + D u grad Cl)  = - q c ,  

The  equation of motion is written in the form of the Darcy law: 

kl 
V = - ~-- grad ( P ) ,  

The  conservation equations for the second continuum are 

0 
Ot m2 = q ' 

( I )  

(2) 

(3) 

(4) 

(s) 

a--t (C2m2) = qc" (6) 

The  concentrat ion of particles in the first continuum is related to the concentrat ion of particles in the second 

continuum by the obvious relation 

C m  = C l m  I + C2m 2 .  (7) 

To describe the mass exchange between the two continua and the changes in the fi l trat ion-capacity char-  

acteristics of the porous medium caused by deposition of particles on the walls of the capillaries and by  dogging 

of a portion of the pore channels,  we will use the pore size distribution function: 

,7 = ~ (r, O. (8) 

For the initial instant of time t = 0 the pore-channel  size distribution will be considered to be known, i.e., 

We rewrite Eq. (8) in the form 

~, (r, o) = ~o (r).  (9) 

, 1 -  ~,(r, 0 = o 

and take the total t ime derivative of Eq. (10). We obtain 

_0~_ 02_dr ~ 0 
Ot - Or d-t + d t  = 

O r  

do) 

(11) 

+ v~ ~ + v~ = o (12) 
0t Or ' 

where Ur = d r / d t  is the rate of change of the radii of the pore channels; UF/= - d ~ l / d t  is the rate of change of the 

number  of pore channels  of radius r. According to the physics of the phenomenon,  the rate  Ur is de te rmined  by 

the processes of colmation and suffosion, and the rate U,1, by the process of clogging of pore channels.  
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Thus, if the pore-channel size distribution r/-- ,p0(r) for the initial instant of lime is assigned and the rates 

Ur(t) and U,1(t) are known, then for any subsequent instant of time the pore-channel size distribution function will 

be determined by Eq. (I 2). 

We note that colmatation is observed in all pore channels into which the suspension penetrated, whereas 

clogging of pores occurs only when the size of the particles is not smaller than the radii of the contractions (throats) 

rs of the pore channels. Consequently, the rate U, t differs from zero only in the region 0 < rs <- R, where R --- 

1/2, and l is the characteristic size of the particles. We also note that channels the radii of whose throats were 

initially larger than R but, due to colmatation, whose dimensions came to satisfy the condition of clogging can also 

be clogged. 
To evaluate the rate of contraction and clogging of the pore channels, we model an actual porous medium 

by a system of cylindrical capillaries of various radii that have pore contractions 17, 8 ]. We will assume that: 1) 

the particles are uniformly distributed in the liquid; 2) the ratio of throat radius to channel radius is the same for 

all capillaries and is maintained in the process of deposition of particles on the channel walls; 3) the volume of the 

throats is negligibly small compared to that of the cavities; 4) the additional hydraulic resistance caused by the 

presence of the throats is negligibly small; 5) a pore channel is completely blocked by a particle that entered the 

throat if the characteristic dimension of the particle is not smaller than the diameter of the throat. According to 

assumption 2, the throat size distribution can be characterized by the same distribution function as the pore size 

distribution. Assumption 5 can be weakened, namely, it can be assumed that the particle stuck decreases the 

diameter of the throat to a certain residual magnitude that is smaller than the characteristic dimension of a particle. 

According to experimental data, the rate at which a cylindrical pore channel contracts due to colmatation 

can be calculated from the formula [3 ] 

,L ) 

1 / 3  

The mean velocity in the pore channel Us is related to the filtration velocity V by the relation 

0 3 )  

Us = IV[ r2/(Skl) ,  (14) 

which can easily be obtained by combining the Poiseuille law for a capillary and the Darcy law for a porous-medium 

element represented by a bundle of capillaries. 
In the time At, colmatation will change the radii of the capillaries by the value 

a,- = a t ,  ( I s )  

which will lead to a reduction in the clearance. The new clearance (and, consequently, the porosity) will be of the 

form 

m I (t + At) = m I ~ r/ (r + A t )  2 dr /~  rlr2dr, 
0 0 

or, neglecting the term containing (Ar) 2 and taking into account Eq. (15), we obtain 

(16) 

m I (t + At) = m I f r/(r  2 -t- 2rU r At) d r / f  rlr2dr, 
o o 

(17) 

i.e., the clearance is changed by the value 

O0 

Am I = 2m I ~ rlrU r At d r / f  rlr2dr. 
o o 

(18) 
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The  total porosity of the bed m is changed by the same value. Having divided Eq. (18) by At and letting At tend 

to zero, we will have for rn 

am = 2rnl rU  r r  1 d r / f  r2rldr.  (19) 
dt o 0 

The  intensi ty of the transition of the particles from the movable to the immovable state qc due to colmatation 

will be 

, a m  ( 2 0 )  
q c =  -- at " 

In order  to evaluate the rate  of clogging of the pore channels,  we use assumption 2, according to which rs 

= hr (h is a certain constant identical for all channels).  We consider channels having radii of the throats  that satisfy 

the clogging condition: 

q _< R .  (21) 

Let us assume that the portion of the capillaries that can be clogged, whose radii satisfy condit ion (21), is 

proportional to the  number  of particles that  penetra ted into such channels ,  with the proport ional i ty  factor  fl 

(0 < fl --- 1). In the time At a specimen of unit cross-sectional area admits 

n = C l IV[ a t / Q  (22) 

panicles,  where  f l  is the volume of a single particle. The  number  of particles that en tered  capillaries of radius r in 

this time will be proportional to the ratio of the cross-sectional area of the capillaries of radius r to the  clearance 

area (this clearance area is equal to the dynamic  porosity): 

nr = n N r  ~cr2/ra I • (23) 

where Nr  is the number  of capillaries of radius r. The  number  of clogged capillaries will be equal to fin. r. 

Let N be the total number  of capillaries. Then  the change in the pore size distr ibution function in the time 

At due to clogging can be calculated as 

2  nNr =r  2 / Cl I V l n r  
_ ( 2 4 )  

- A t  I = f l n / N  - N m  I Q m  I , 

and the rate U, t will be equal to 

Ivl 2 (25) 
UT/ -- At -- Qm I 

Thus,  the coefficients Ur and U,/in Eq. (12) are defined by the dependences  

lVl r02/,/3 
U r = - C 1 4k t  L ) ' 

(26) 

UT/ = 

2 
IVl r l x r  
Qm I (2r < l / h ) ,  (27) 

0 (2r > l / h ) .  
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We evaluate the change in the absolute permeability caused by the influence of colmatalion on the structure 

of the pore space by representing the permeability at the current instant of time kl (x, y, z, t) in the form of the 

product 

kt = k k  ° , (2s)  

where the coefficient ~(x, y, z, t), which characterizes the relative change in the permeability of the first medium, 

is determined using the model of parallel capillaries and the Poiseuille law: 

O0 

7E = ~ 4 (r) d r / f  r4io 0 (r) dr. (29) 
o o 

The intensity of the transition of the liquid from the movable to the immovable state caused by clogging of 

the pore channels is determined by the volume of the clogged capillaries and can be calculated from the formula 

or 

q=:xflC1V-~ g/fhrlr4dr/~f ~lr2dr (30) 
0 0 

R/h 
q = m I f Ur l r2dr / f  rlr2dr. 

0 0 

The intensity of the transition of the particles to the immovable state because of clogging will be 

,1 
qc = Clq , 

while the total intensity of the transition of the particles to the immovable state is 

t/ • 
qc = qc + qc" 

(31) 

(32) 

(an) 

N O T A T I O N  

m, porosity; ml, dynamic porosity; m2, portion of the pore space with immovable liquid; Du, coefficient of 

convective diffusion; V, filtration velocity; P, pressure; k °, absolute permeability; kl, permeability of the first 

medium; #,  dynamic viscosity of the liquid; C, concentration of solid particles; Cl, C2, concentration of particles 

in the first and second continua; r, radius of a pore channel; rs, radius of the pore-channel throat; h, constant equal 

to the ratio of the throat radius to the pore-channel radius; t, time; ~7, portion of capillaries of radius r; ~, pore size 

distribution function; Ur, rate of change of the radii of the pore channels; U,t, rate of change of the number of pore 

channels of radius r; l, characteristic dimension of the particles; L, characteristic length of the pore channels; N, 

total number of capillaries in a sample with a unit cross-sectional area; Nr, number of capillaries of radius r; n, 
number of particles that penetrated into all the capillaries in a sample with a unit cross-sectional area; nr, number 

of particles that penetrated into the capillaries of radius r; Us, mean value of the liquid velocity in a channel; D, 

diffusion coefficient; q, intensity of the transition of the liquid from the movable to the immovable state; qc, q~c, 

intensity of the transition of the particles from the movable to the immovable state because of deposition and 

clogging, respectively; qc, total intensity of the transition of the particles to the immovable state. Subscripts: u, 

association of a quantity with the filtration velocity; c, association of a quantity with the concentration; s, mean 

value of a quantity. 
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